CARBON STORAGE AND CYCLING IN RANGELANDS OF THE CANADIAN PRAIRIES

SASKATCHEWAN SOIL CONSERVATION ASSOCIATION SASKATOON, SK FEBRUARY 2020

Research Team:

Edward Bork

Scott Chang

JC Cahill

Mark Boyce

Mike Alexander

Mark Lyseng

Donald Shoderbeck

Dan Hewins

Jessica Grenke

Bharat Shrestha

Jeannine Randall

Upama KC

Dauren Kaliaskar

Kyle Le

Guillermo Ramirez

Christina Hebb

AEP

ABMI

Research Support:

Grassland loss

60-83% grassland conversion

- 2% / year loss of great plains (WWF, 2016)
- Alberta grasslands: +1.8% human footprint (ABMI,1999 to 2013)
- 40,000 fewer acres of natural area used for livestock (2016 Census)

Grassland Ecosystem Goods and Services

"the services and benefits from ecological functions provided to humans"

Cattle, GHG, soil carbon, climate change

- Increased GHG
- Concern over GHG from cattle
- The risk of drought is increasing
- Managing for soil carbon benefits forage production
- No offset protocol for perennial vegetation

Soil Carbon

How does land use affect EG&S?

Do cattle affect EG&S?

Can we identify cattle management practices that improve EG&S?

Stocking rates: intensity, the amount of use by cattle

Grazing systems: the season, duration, cattle density

What are the reasons for the changes we observe?

Cultivation reduces carbon storage

Tame pastures didn't recover carbon after 20 years

Native grasslands have higher soil physical quality than tame pasture and cropland

LAND USE TYPE	Max Water Availability (cm³ cm⁻³)	Soil Porosity	Fractal Index (e.g. aggregation)
Native Grassland	0.14 ^b	0.54 ^b	0.048 ^b
Introduced Pasture	0.099ª	0.46ª	0.033 ^{ab}
Annual Cropland	0.096 ^a	0.47 ^a	0.020 ^a

ENVIRONMENTAL SCIENCES

Rangeland Research Institute

Hebb et al. 2017

Carbon Benchmarking Study

Compared areas inside and outside long-term cattle exclosures (n=107)

Subalpine

©University of Alberta Created 04/2014 by DFS

Moderate grazing increased carbon storage

Stocking rate increased soil carbon in community pastures

- Mixed and Moist-Mixed grassland
- 9 Community pastures
- Long-term cattle data
- 60 cm deep
- Low stocking rates

Long-term Stocking rate (AUM/ha)

Grazing alters the relationship between plants and SOC

Grasslands with greater proportion of non-native plants had higher soil carbon and forage

Bork E, Lyseng M, Hewins DB, Carlyle CN, Chang S, Willms W, Alexander M. In press. Canadian Journal of Plant Science.

Astragalus cicer increased forage but reduced diversity and soil carbon

Centaurea stoebe altered soil and vegetation

& Diversity

Poa pratensis increased litter decomposition through increased microbial activity

Ongoing Research: What is the optimal grazing

system to increase carbon storage?

Adaptive multi-paddock grazing (AMP):

- high animal density
- fast rotations
- long rest periods

Preliminary results show:

- Limited effects on soil carbon
- Slight increase in GHG soil flux and soil microbial activity

Stocking rates

Ongoing research: Grazing and drought effects on roots and carbon cycling

Summary:

- Native grasslands store more carbon
- Moderate grazing increases carbon
- Changes in plant composition are an important driver
- Effects of grazing system are forthcoming

UNIVERSITY OF ALBERTA
FACULTY OF AGRICULTURAL,
LIFE & ENVIRONMENTAL SCIENCES
Rangeland Research Institute